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Dynamic Modeling and Inverse Optimal PID with Feed-forward Control
in H∞ Framework for a Novel 3D Pantograph Manipulator
Manar Lashin*, Mohamed Fanni, Abdelfatah M. Mohamed, and Tomoyuki Miyashita

Abstract: This paper affords dynamic modeling and control for a new 3D pantograph manipulator. The new ma-
nipulator possesses pure decoupled translational motions and it is characterized by large workspace to size ratio,
high speed, rigidity, and accuracy. Euler-Lagrange first type method is used to get the dynamic model. However,
the resulted dynamic model is too complex to be used in model-based control techniques. Therefore, a simplified
nominal plant is proposed. It allows the inverse dynamic solution efficiently. However, an explicit form of the
nominal Coriolis and centrifugal matrix cannot be obtained due to the complicated kinematic terms. Considering
these dynamic characteristics as well as the required robust trajectory tracking performance of the manipulator, a
new controller is proposed. The new controller is called inverse optimal PID with Feed-Forward Control which is
designed in H∞ framework. The new controller has the following merits; robustness, optimality, simple implemen-
tation, and efficient execution without the need of explicit forms of dynamic matrices. The extended disturbance in
the proposed controller is smaller than that in the inverse optimal PID control (IPID) and contains one type of error
contrary to the nonlinear robust motion controller (NRIC). The performance of the proposed controller is compared
with those of IPID and NRIC controllers for different trajectories and payloads. The dynamic simulation results
via co-simulation of MSC-ADAMS R⃝ and MATLAB R⃝/Simulink software prove the robustness of the proposed
controller against speed/payload variations. The proposed controller is found to have higher performance compared
with IPID and NRIC controllers. These results assure the feasibility of the 3D pantograph manipulator with the
proposed controller for pure translational tracking applications.

Keywords: Decoupled motions, H∞ framework, inverse PID, NRIC, pantograph, parallel robot, robust control,
robust controller, translational manipulator.

1. INTRODUCTION

In recent decades parallel manipulators have received
great progress in their development due to their advan-
tages over serial manipulator such as higher stiffness,
higher accuracy, and lower inertia. Despite its advantages,
parallel manipulators suffer from several major drawbacks
such as small workspace, complex forward kinematics,
complicated structures, and a high manufacturing cost
[1]. Some applications such as pick-and-place requires
the positioning of the robot end-effector without chang-
ing its orientation. Several studies have considered the
design and synthesis of manipulators to meet this need
such as Delta and Tsai manipulators [2, 3]. However,
a major problem with these manipulators is the limited
workspace relative to their volume. Moreover, the re-
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duction of the DOFs can result in coupled motions of
the movable platform which increase the complexity of
the kinematic and dynamic analysis as well as the con-
trol technique [4]. Achieving the translational decoupling
between actuators themselves is considered point of re-
search interest. Gosselin and Kong [5] present a 3D trans-
lational parallel robot, with fully-decoupled input-output
relations. Afterward, a series of decoupled 3D transla-
tional parallel mechanisms has been published [6–10]. A
search of the literature revealed many manipulators that
have the same functionality but with different structures
such as Tripteron [9,11–13] and Pantopteron [14]. In [15],
a novel 3D translational pantograph manipulator has been
proposed. This innovative design combines, to some ex-
tent, the advantages of both serial and parallel manipula-
tors. In addition, it has decoupled 3D translational mo-
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tions. This proposed manipulator has several useful char-
acteristics over its competitive counterparts such as Delta
and Tsai manipulators. It has higher workspace to size ra-
tio comparable to that of a serial manipulator as well as
linear decoupled inputs-outputs relationships. Dynamic
modeling of this new manipulator is required to use an
efficient control strategy to realize its benefits. The com-
plexity of the dynamic model of most parallel manipula-
tors prevents the use of model-based controllers. Further-
more, the proposed manipulator has a non-conventional
structure with interconnected chains. This increases the
complexity of the dynamic formulation which has not
been investigated in the literature. The model-free con-
troller did not provide a satisfying performance. In [16],
PD type of fuzzy controller is applied for the proposed ma-
nipulator. However, the controller was not robust enough
for high-speed applications and high payloads. The main
challenge faced by many model-based controllers is the
need of explicit forms of the dynamic model matrices.
This is not easy to have, in particular, the Coriolis and
centrifugal matrix, C-matrix, specially for parallel and in-
terconnected manipulators as the proposed manipulator.
Park and Chang [17] introduced H∞ control of a Mod-
ified Computed Torque Control (MCTC) for Lagrangian
systems and applied it on serial manipulator. However,
this controller needs explicit forms of all dynamic matri-
ces. Choi et al [18] highlights the need to bring the op-
timal control to industrial robots through PID controller
particularly for trajectory tracking problem. He used the
nonlinear H∞ framework of Park and Chan [17] to prove
the optimality and robustness of the PID controller for La-
grangian systems. He proposed a controller called inverse
optimal PID (IPID) and applied it also for a serial manip-
ulator. Contrary to [17], IPID does not need any dynamic
matrices. In the same framework, Kim et al [19] proposed
a new controller structure for robotics applications called
Nonlinear Robust Internal Loop Controller (NRIC). He
applied it successfully for a serial manipulator. NRIC does
not need C-matrix but needs an explicit form of the iner-
tia matrix, M-matrix. Thus, IPID and NRIC controllers
suit the dynamic characteristics of the proposed manip-
ulator and can be applied for its trajectory tracking con-
trol. However, the applications of both controllers on the
proposed manipulator, as will be shown in this work, in-
dicates a lake of accuracy and robustness, particularly in
high speed applications. To solve this problem a new
controller is proposed based on the same framework of
the IPID controller called Feed-Forward Controller with
Inverse Optimal PID (FFOPID) that consists of a Feed-
Forward controller and IPID controller. For this controller,
there is no need to have an explicit form of any dynamic
matrices. The extended disturbance that used in the for-
mulation of the trajectory tracking problem is smaller than
that of IPID and is function of one error contrary to that of
NRIC which is function of two types of errors. The perfor-

mance of the proposed controller, FFOPID, is compared
with those of IPID and NRIC controllers based on payload
variations under different trajectories. For the dynamic
simulation using MSC-ADAMS, three batches of trajec-
tories are used. First trajectory is a quintic polynomial,
second trajectory is composed of three sinusoidal signals
of different frequencies (2-20 rad/sec), and the third one is
the standard pick-and-place cycle of 25× 305 mm in 0.5
sec. The new controller shows a higher tractability under
high speed applications compared with IPID and NRIC.
This paper is organized as follows: The description of the
3D translational pantograph manipulator is presented in
Section 2. The kinematic analysis is discussed in Sec-
tion 3. Dynamic formulation based on generalized Euler-
Lagrange formulation is presented in Section 4 and the
derivation of the nominal plant is discussed in Section 5.
The control strategy is explained in Section 6, while the
simulation results and discussion are presented and ana-
lyzed in Section 7. Finally, some concluding remarks and
future research directions are given in Section 8.

2. DESCRIPTION OF THE 3D TRANSNATIONAL
PANTOGRAPH MANIPULATOR

The proposed 3D translational pantograph manipulator
is shown in Fig. 1 comprises of a pantograph mechanism
with two types of parallelograms. One type of the par-
allelograms is acting on the pantograph plane. It is re-
sponsible for fixing the orientation of the end-effector in
the plane of the pantograph. The other type of the par-
allelograms is acting on planes perpendicular to the pan-
tograph plane and is responsible for fixing the orientation
of the end-effector in a plane perpendicular to that of the
pantograph. So, the end-effector has fixed orientation in
3D space. The pantograph mechanism with two paral-
lelograms of the first type are shown in Fig. 1 by dark
lines. All revolute joints in this linkage have horizontal
axes. Four parallelograms of the second type are shown
in Fig. 1 by gray lines. Two parallelograms are on each
side of the pantograph mechanism to achieve symmetrical
design and hence increases the torsional stiffness of the
system. All main revolute joints of these second type par-
allelograms have vertical axes. The revolute joints with
horizontals axes exist within these parallelograms are to
facilitate the working of the original pantograph mecha-
nism and the parallelograms of the first type. The extreme
left horizontal link at end A is fixed to a horizontal slider
acting along z-axis relative to another vertical slider acting
along y-axis relative to the ground. The joint with vertical
axis at B is attached to a horizontal slider acting along the
x-axis. The extreme right horizontal link at end E is the
end-effector that moves pure translational motions with-
out changing the orientation according to the independent
motions of the linear actuators acting on the three slid-
ers. Figure 2 shows the CAD model of the proposed ma-



www.manaraa.com

Dynamic Modeling and Inverse Optimal PID with Feed-forward Control in H∞ Framework for a Novel 3D ... 41

Fig. 1. Schematic diagram of the proposed pantograph.

Fig. 2. 3D translational pantograph CAD model.

nipulator. On one side, the shape of the manipulator re-
sembles that of a serial manipulator and enables having a
large workspace. On the other side, all actuators are lo-
cated on/near the base like a parallel manipulator which
enables having low inertia links and consequently high
speed, stiffness, and accuracy.

3. KINEMATIC ANALYSIS

In order to analyze the kinematics of the 3D transla-
tional pantograph manipulator, a fixed global reference
system o-xyz is assigned as shown in Fig. 3. The fol-
lowing generalized coordinates E = (qx qy qz) denote the
position of the end-effector. The purpose of the forward
kinematics is to find the position of the moving platform
qx, qy, qz as a function of the actuated variables xa, ya, za.
In parallel manipulator, the forward kinematics is com-
plex due to the existence of the closed chains. In many
parallel robots, this complexity does not yield closed
form solutions. The proposed manipulator has simple
forward/inverse kinematics relationships. The mechani-
cal system in Fig. 3 has three input variables; xa = OB,
ya = A′A, and za = OA′. The following two vector-loop
closure equations can be written

⇀
OE =

⇀
OA+

⇀
AD+

⇀
DE, (1)

⇀
OE =

⇀
OB+

⇀
BF +

⇀
FE, (2)

where O is the origin of the fixed coordinate system O-
xyz. The axes x, y, and z are parallel to the actuation axes
of the three translational actuators. The position vector of
the end-effector and the vector of the linear actuated joint
variables are E = [qx,qy,qz]

T and p = [xa,ya,za]
T respec-

tively. Since the end-effector of the proposed manipulator

Fig. 3. Geometry of the 3D translational pantograph.

has translational motions only the rotation matrix becomes
identity. Let AC = BC = DF = a and CD = BF = FE = b
as design constraints. Loop equation (1) is used to obtain
the following three scalar equations

qx = (cosθ1 − cosθ2)(a+b)cosϕ , (3)

qy − ya = (sinθ1 − sinθ2)(a+b), (4)

qz − za =−(cosθ1 − cosθ2)(a+b)sinϕ . (5)

Similarly, three scalar equations can be derived from
loop equation (2)

qx − xa = (cosθ1 − cosθ2)b cosϕ , (6)

qy = (sinθ1 − sinθ2)b, (7)

qz =−(cosθ1 − cosθ2)b sinϕ . (8)

Dividing (3) by (6) to get the relation between the input
actuator displacement xa and the output displacement qx

along x-axis

qx = Mxxa, (9)

where Mx = 1+ b
a is the magnification factor of the in-

put variable xa. Similarly, from (4) and (7) and from (5)
and (8), one gets the relationships between ya and qy and
between za and qz respectively.

qy = Myya, qz = Mzza, (10)

where My = Mz =
−b
a are the magnification factors of the

input variables ya and za respectively. The relations (9)
and (10) illustrate the linearity between the input and out-
put displacements as well as the decoupling of the trans-
lational motions. The angels ϕ , θ1 and θ2 are calculated
according to the following equations:

ϕ = atan2(za,xa) (11)

while

θ1,2 =

2atan2
(
∓2aya ±

√
4a2y2

a −
(

x2
a

cosϕ 2 + y2
a

)2

+
4a2 x2

a

cosϕ 2 ,

x2
a

cosϕ 2 + y2
a ±

2axa

cosϕ

)
. (12)
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4. DYNAMIC MODELING

There are different approaches that are commonly used
in robotics to establish the dynamic model. Euler-
Lagrange formulation, Newton-Euler formulation and the
principle of virtual work. The Euler-Lagrange method of
the first type probably is a better choice for the proposed
manipulator. The proposed 3D pantograph manipulator is
a special type of manipulators since it has interconnected
structure rather than serial or parallel structures which in-
creases its complexity. In Euler-Lagrange method of the
first type, the equations are written in terms of a set of in-
dependent and redundant coordinates. Consequently, the
method requires a set of constraint equations that relates
the redundant coordinates to the independent coordinates.
The constraint equations can be inspired from the kine-
matics of the proposed manipulator. The generalized coor-
dinates vector, q̀, is defined as [θ1, θ2, ϕ ,xa, ya, za]

T . The
angles: θ1,θ2, and ϕ are the redundant coordinates while
xa, ya and za are the independent joint variables. The con-
straint equations inferred from Fig. 3 are:

Γ1 = (
a+b

a
−1)xa −b cosϕ(cosθ1 − cosθ2), (13)

Γ2 =−(
b
a
+1)ya − (a+b)(sinθ1 − sinθ2), (14)

Γ3 =−(
b
a
+1)za +(a+b)(cosθ1 − cosθ2)sinϕ .

(15)

These constraint equations and their derivatives are ad-
joined to the main equations of motion using Lagrange
multipliers λi. The equations of Euler-Lagrange of the
first type are written as:

d
dt
(

∂L
∂ ˙̀q j

)− ∂L
∂ q̀ j

= Q̀ j +
3

∑
i=1

λi
∂Γi

∂ q̀ j
for, j = 1 to 6, (16)

where L is the Lagrangian which is expressed as the dif-
ference between the total kinetic energies K of links and
the total potential energies U :

L = K −U .

Q̀ j is the generalized force associated with the generalized
coordinate q̀ j. Since there are no external forces associ-
ated with the redundant coordinates, the generalized force
vector can be written as Q̀ = [0 0 0 fx fy fz]

T where fx, fy,
and fz are the input forces acting on x-, y-, and z-slider
respectively. For the inverse dynamics which are needed
to implement the controllers considered in this work, La-
grangian multipliers, λi, are calculated from the first three
equations in (16) as:

3

∑
i=1

λi
∂Γi

∂ q̀ j
=

d
dt
(

∂L
∂ ˙̀q j

)− ∂L
∂ q̀ j

j = 1 to 3. (17)

Fig. 4. Nominal plant for 3D pantograph manipulator.

Then, the actuator forces fx, fy and fz are calculated from
the last three equations in (16) as:

fx =
d
dt
(

∂L
∂ ẋa

)− ∂L
∂xa

−
3

∑
i=1

λi
∂Γi

∂xa
, f or j = 4 to 6,

(18)

fy =
d
dt
(

∂L
∂ ẏa

)− ∂L
∂ya

−
3

∑
i=1

λi
∂Γi

∂ya
, f or j = 4 to 6,

(19)

fz =
d
dt
(

∂L
∂ ża

)− ∂L
∂ za

−
3

∑
i=1

λi
∂Γi

∂ za
, f or j = 4 to 6.

(20)

The closed-form dynamic equations of motion of the
whole manipulator are expressed as:

M(q)q̇+C(q, q̇)q̇+g(q) = Q, (21)

where M(q) is the 3×3 inertia matrix, C(q, q̇) is the 3×3
Coriolis and centrifugal matrix and g(q) is the gravity vec-
tor. In (21), Q and q are vectors ∈ R3, consist of the
last three elements in Q̀ and q̀ respectively. The resul-
tant equations, show that the actuator forces in x- and y-
direction produce coupled motions in x- and y- direction
while the actuator force in z-direction produces indepen-
dent motion in z-direction. These results make the control
task more difficult. The controller should recover these
dynamic coupling between x- and y- directions. The dy-
namic model of the proposed 3D pantograph has a com-
plicated kinematic terms. The symbolic expression of the
Lagrangian or one of its derivatives has more than 25,000
character on MATLAB R⃝. This makes the execution time
of a single evaluation loop takes considerable long time
which prevents the use of this dynamic model in prac-
tical control applications. To solve this problem a new
method is proposed to get an accurate and simplified nom-
inal plant.

5. NOMINAL PLANT DERIVATION

In this section, a method to obtain a simpler dynamic
model for the proposed manipulator is explained. This
nominal plant is established by assuming that the proposed
3D pantograph manipulator has five concentrated masses
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at five points representing its inertia. The mass of each
link is assumed to be concentrated equally at its two end-
points like links AD and DE in Fig. 4 or concentrated at its
midpoints like the sliders or the links perpendicular to the
pantograph plane. In some cases, the concentrated masses
are further replaced by other concentrated masses at differ-
ent locations to decrease the total number of the concen-
trated masses. Take for example link BF in Fig. 4; first its
mass is divided equally between two concentrated masses
located at points B and F, then the concentrated mass at F
is further divided into two masses located at points D and
E according to the ratio of length FE to length FD. Fig-
ure 4 shows the five concentrated masses located at points
A, A1, B, D, and E. Point A moves in y and z directions
while points A1 and B moves in y- and x- directions re-
spectively. Both points D and E moves in the three direc-
tions x, y, and z. The values of the concentrated masses
are shown in Table 1. Afterward, the dynamic modeling
using Euler-Lagrange of first type is applied using the gen-
eralized coordinates vector [xD, yD, zD,xa, ya, za]

T , where

xD =(a+b)cosθ1 cosϕ , (22a)

yD =(a+b)sinθ1 + ya, (22b)

zD =− (a+b)cosθ1 sinϕ + za. (22c)

Using (11) and (12), one can get the constraints equations.
The total kinetic energy of the concentrated masses is:

K = kA + kA1 + kB + kD + kE , (23)

where

kA =0.5mA(ẏ2
a + ż2

a), kA1 = 0.5mA1ẏ2
a, (24a)

kB =0.5mBẋ2
a, kD = 0.5mD(ẋ2

D + ẏ2
D + ż2

D), (24b)

kE =0.5mE((
a+b

a
ẋa)

2 +(
−b
a

ẏa)
2 +(

−b
a

ża)
2).

(24c)

The total potential energy of the manipulator is:

U = uA +uA1 +uB +uD +uE , (25)

where

uA =(mA)gya, uA1 = (mA1)gya, (26a)

uB =0, uD = mD gyD, uE = mE g(
−b
a

)ya. (26b)

The Lagrangian multipliers, λ1, λ2 and λ3, are given by:

λ1 = 5.263ẍD, λ2 = 5.263ÿD +51.63, λ3 = 5.263z̈D.
(27a)

The actuator forces fx, fy and fz can be written as:

fx = 96.9ẍa +λ1[
c1

b1
− c1x2

a

b2
+

1.15xac3 −a7

c2
]

Table 1. The masses values at the five points of the nom-
inal plant as illustrated by Fig. 4.

Lumped mass [Kg]
mA 2.6889
mA1 1.232
mB 1.4683
mD 5.2628
mE 2.886

Table 2. Comparison between the actuator forces calcu-
lated from MS-ADAMS R⃝, Complete model and
the Nominal Plant

Time MS-
ADAMS R⃝,[N]

Complete
model,[N]

Nominal
Plant,[N]

Start
fx =−165.4 fx =−165.48 fx =−164.91
fy =−198.41 fy =−198.27 fy =−198.95
fz =−0.0331 fz =−0.0372 fz =−0.0329

End
fx =−143.224 fx =−142.6 fx = 142.791
fy =−177.457 fy =−177 fy =−178.051
fz =−10.3705 fz =−10.649 fz =−10.339

+λ3[
c1xaza

b2
− 1.15zac3 −a7

c2
]

+1.15λ2a4b7 −
a7

b3
, (28)

fy = 69.04ÿa −λ2[
1.15cc5a8

c7
−1]− [1.15λ1xasc5

a8

c6
]

+ [1.15λ3zasc5
a8

c6
]+96.03, (29)

fz = 67.81z̈a −λ3[
0.575cc5

b1
−a9z2

a +
1.15zasc5 e3

b1c7
−1]

−λ1[0.575xazaa9 −
1.15xasc5e3

b1c7
]

+1.15λ2
cc5e3

c7
(30)

while ai, bi, ci and ei i = 1,2, ...etc are given in Ap-
pendix A.

The accuracy and efficiency of the simplified nominal
plant are tested through dynamic simulation. The test is
carried out using a trajectory composed of three sinusoidal
motions with different frequencies for the three actuators
acting in x-, y- and z-directions. This trajectory is applied
for the dynamic models of both the proposed manipula-
tor obtained by MSC-ADAMS R⃝ and the nominal plant.
The two models are subjected to a trajectory with max-
imum frequency of 20 rad/sec as shown in Fig. 5. This
test indicates that the nominal plant approximates the real
model accurately even at high frequencies. According to
this test, the nominal plant not only simplifies the com-
plex dynamic model of the proposed manipulator but also
alleviates the burden of the computation. Thus, the pro-
posed simplified model can be implemented in practical
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Fig. 5. Comparison between forces fx, fy and fz of MSC-ADAMS R⃝ and those of the nominal plant for trajectory having
maximum frequency of 20 rad/sec.
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Fig. 6. Comparison between forces on the three orthogonal axes for MSC-ADAMS R⃝, complete model and nominal plant.

applications to meet the demand of the real-time control.
At the same time, the error between the responses of the
real and simplified models as shown in Fig. 5 is within a
reasonable range. This error will be recovered by the pro-
posed controller as will be shown in Section.7. Another
comparison between the complete dynamic model, nom-
inal plant and the model obtained from MSC-ADAMS R⃝

are shown in Fig. 6. The results of the complete model
that are generated using Euler-Lagrange of the first type
represent the real dynamic model of the proposed manip-
ulator accurately. Also, the simplified nominal plant ap-
proximates well the dynamics of the proposed manipu-
lator. The values of these forces during the comparison
are given in Table 2. As mentioned in the previous sec-
tion, the complete dynamic model occupies large size in
the workstation memory, more than 25,000 character for
each symbolic expression such as θ̇1, θ̈1...etc. The execu-
tion time of a single evaluation loop, using MATLAB/M-
File R⃝, for the actuator forces fx, fy and fz takes about
90 min on a workstation with the following specs: Core
i7, 16GB of RAM. This model consumes long execution
time due to the use of symbolic toolbox in MATLAB/M-
File R⃝ to calculate the time derivatives for the dynamic
model variables, in addition to the long mathematical ex-
pressions of the angles θ1 and θ2. This results in a very
big symbolic expression for the actuator forces fx, fy and
fz. This evaluation is done at least hundreds of times
during each frequency test. One additional advantage of
the proposed nominal plant lies in the ability to formu-
late the dynamic model using MATLAB/SIMULINK R⃝.
In this case, the mathematical equations can be built up
easily in MATLAB/SIMULINK R⃝ and the time deriva-

tives can be calculated using SIMULINK R⃝ engine more
faster. Hence, the execution time reduces to be less than
0.04 msec. The calculation speed of the robot dynam-
ics is essential for high-speed practical applications such
as pick-and-place operation which requires a robust con-
troller scheme to be applied. Consequently, the nominal
plant makes it easy to apply model-based control on the
proposed manipulator using MATLAB/SIMULINK R⃝ for
high-speed applications.

6. INVERSE OPTIMAL PID WITH
FEED-FORWARD CONTROLLER IN H∞

FRAMEWORK

As shown in the previous section, the nominal plant
approximates well the dynamics of the proposed ma-
nipulator. However, the symbolic extraction of its C-
matrix (Coriolis and Centrifugal matrix) is not possi-
ble because of the complicated kinematics terms. Using
Euler-Lagrange method of the first type enables the cal-
culation of the inverse dynamics efficiently without the
need of explicit dynamic matrices. So, for a search of
a suitable controller for the proposed manipulator, such
dynamic characteristics should be considered. As a first
trial, the PID controller which is commonly used in in-
dustrial robots is investigated. Choi et al [18] used the
nonlinear H∞ framework to prove the optimality and ro-
bustness of the PID controller. Since they used inverse op-
timization method rather than direct optimization method,
this controller is named inverse optimal PID (IPID) con-
troller. They provide conditions for extended disturbance
input-to-state stability (EISS). Unfortunately, the applica-
tion of IPID for our proposed robot, as will be shown later
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Fig. 7. Structure of the FFOPID.

indicates lake of robustness during high robot speed. In
the same framework, Park and Chang [17] introduced H∞
control of a Modified Computed Torque Control (MCTC).
This controller consists of two parts.

The first part compensates the estimated torques while
the second part is exactly the IPID controller. However,
we could not apply this controller for the proposed ma-
nipulator, since it requires an explicit form of C-matrix of
the nominal plant which is not available in our case. In the
same framework, Kim et al [19] introduced Nonlinear Ro-
bust Internal Loop Compensator (NRIC). This controller
consists of two parts. The first part is a Computed Torque
Control (CTC) of a nominal plant, while the second part
is exactly IPID controller. Since CTC requires the explicit
form of the inertia matrix of the nominal plant only which
is available in our case, we could apply this controller to
the proposed manipulator. However, the results, as will
be shown later in simulation section, are not encourag-
ing. This can be attributed to many factors such as the
two types of errors contained in the NRIC extended distur-
bances and the large number of gains to be tuned. It is to
be noted that all the above-described controllers were not
tested on parallel or interconnecting manipulators. They
were tested solely on serial manipulators. The above men-
tioned unsuccessful results motivate us to develop a new
controller in the same framework that is suitable for the
proposed manipulator and its special dynamic characteris-
tics. Fig. 7 shows the structure of the proposed controller.
The controller consists of two parts: the first part is a Feed-
Forward controller of the nominal plant while the second
part is the IPID controller. On one hand, the Feed-Forward
controller does not need an explicit form of any dynamic
matrices when Euler-Lagrange method of the first type is
used. This makes the calculation possible and faster. On
the other hand, as shown later in the equations, the ex-
tended disturbance is smaller than the case of IPID and
contains one type of error. This has positive consequences
on the robustness of the controller. In this section, the
design of the proposed controller is investigated and its
optimality and stability are discussed. Let the closed loop
dynamics of the proposed system be written as:

τc + τa = MR(qR)q̈R +CR(qR, q̇R)q̇R +gR(qR)+d(t),
(31)

where MR,CR and gR are the inertia matrix, Coriolis and

centrifugal matrix and the gravitational vector respectively
for the real plant and d(t) is the external disturbance.
The controller term τc is designed as a Feed-Forward
control torque that is generated from the dynamic model
of the nominal plant in which the desired configurations
qD, q̇D, q̈D are the required input:

τc = MN(qD)q̈D +CN(qD, q̇D)q̇D +gN(qD), (32)

where MN ,CN and gN are the inertia matrix, Coriolis and
centrifugal matrix and the gravitational vector respectively
for the estimated nominal plant. It is to be noted that
Euler-Lagrange method of the first type is used here to
calculate τc where no explicit form of the above matrices
are needed. By subtracting (32) from (31), the torque, τa,
can be written as:

τa = M̃(q̈R − q̈D)+C̃(q̇R − q̇D)+ g̃+d(t), (33)

where M̃ = MR −MN , C̃ =CR −CN , g̃ = gR −gN . The ex-
tended disturbances including parameters uncertainties,
nonlinearities and the external disturbances d(t) are for-
mulated here as:

ω(t, ė,e,
∫

e) =M̃q̈D +MR(KPė+KIe)+C̃q̇D

+CR(KPe+KI

∫
e dt)+ g̃+d(t),

(34)

where KP, KI are diagonal constant matrices and the track-
ing error is defined as e = qD −qR. The extended distur-
bance ω is assumed to be bounded and the configuration
derivatives q̇D, q̇R also are considered bounded. The resul-
tant system dynamics becomes:

MR(qR)ṡ+CR(qR, q̇R)s = ω +u, (35)

where u =−τa and s = ė + KPe + KI
∫

edt. If the state
vector is defined as: x = [x1 x2 x3]

T = [
∫

e e ė]T ∈ R3n, the
state-space representation of (35) can be found as:

ẋ = A(x, t)x+B(x, t)ω +B(x, t)u, (36)

where

A =

 0 I 0
0 0 I

−M−1CKI −M−1CKP−KI −M−1C−KP

 ,

B =

 0
0

M−1

.
Consider this general H∞ performance index:∫ ∞

0
[xT Q(x, t)x+uT R(x, t)u]dt ≤ γ2

∫ ∞

0
ωT ω dt,

(37)
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where Q is a state weighting matrix, R is the control input
weighting, and γ means L2-gain. The Hamilton-Jacobi-
Isaacs (HJI) equation for this performance index and Lya-
punov function were suggested previously [20]:

HJI =Vt +VxAx+
1

2γ2 VxBBTV T
x − 1

2
VxBR−1BTV T

X

+
1
2

xT Qx = 0 (38)

with a smooth function V (x, t) > 0, V (0, t) = 0, Vt =
∂V
∂ t

and Vx =
∂V
∂x . u =−R−1BTV T

x . This controller, u, mini-
mizes the H∞ performance index (37) and the Lyapunov
function is V (x, t) = xT P(x, t)x where

P =

 KI MRKI+KI KPK KI MRKP+KI K KI MR

KPMRKI+KI K KPMRKP+KPK KPMR

MRKI MRKP MR

 . (39)

The following conditions should be satisfied:
1) K, KP, KI > 0, constant diagonal matrices,
2) K2

P > 2KI .
This gives the differential Riccati equation:

Ṗ+AT P+PA−PBR−1BT P+Q = 0. (40)

The weighting matrices Q and R will be inversely found
from the differential Riccati equation. If the weighting
matrix R is defined as:

R = (K +
1
γ2 I)−1,

where I is the identity matrix, then the weighting matrix
Q can be obtained from the differential Riccati equation
inversely.

Q =

 K2
I KI 0 0
0 (K2

P −2KI)KI 0
0 0 KI

.
Choi et al [18] proved that if the IPID controller satisfying
the following conditions:

1) K, KP, KI > 0, constant diagonal matrices,
2) K2

P > 2KI ,
3) γ > 0
is applied to the Lagrangian system (36), the closed-

loop control system is EISS. Finally the proposed Feed-
Forward control torque of (32), with the IPID can be ex-
pressed as:

τc + τa =MN q̈D +CN q̇D +gN

+(K +
1
γ2 )

(
ė+KPe+KI

∫
e
)
, (41)

The IPID that introduced by Choi et al [18] to solve tra-
jectory tracking problem for complex mechanical systems
has the following form:

u =−(K +
1
γ2 )

(
ė+KPe+KI

∫
e
)
. (42)

The extended disturbances [18] can be written as:

ω(t, ė,e,
∫

e) =M(q)(q̈D +KPė+KIe)

+C(q, q̇)
(

q̇D +KPe+KI

∫
e
)

+g(q)+d(t). (43)

It is clear that the extended disturbance formulated in the
proposed controller here (34) is smaller than that of IPID
(43). Therefore, the performance of the proposed control
is expected to be higher than that of IPID control as will
be illustrated in the next section. For the NRIC controller
proposed by Kim et al [19], the extended disturbance is
expressed as:

ω =MR(M−1
N −M−1

R −KPėRN −KIeRN)τc

+CR((C−1
R MRM−1

N CR − I)ėDN −KPeRN

−KI

∫
eRN)+(gR −MRM−1

N gN)

+(CR −MRM−1
N CN)q̇D +d(t). (44)

The notation R and N refers to real and nominal plants
respectively. The overall control law for NRIC utilizing
CTC as outer loop controller is:

u =M̂N(q̈D + k1ėDN + k2eDN)+ĈN q̇N + ĝN

+(K +
1
γ2 )(ėRN +KPeRN +KI

∫
eRN). (45)

As shown in (44), there are two types of errors, eDN and
eRN . eDN is the error between desired and nominal plant
states, while eRN is the error between real plant and nom-
inal plant states. Also, as shown in (45) there are a large
number of gains to be tuned compared to IPID and the
proposed FFIPID controllers. In the next section, the
three controllers IPID, NRIC (with CTC) and the pro-
posed FFOPID controllers are applied to the proposed ma-
nipulators and their performances are compared. A realis-
tic MSC-ADAMS R⃝ model for the proposed manipulator
is used as the real plant in the simulation studies.

7. SIMULATION STUDY AND DISCUSSION

The performance of the proposed controller, FFOPID,
is tested and compared with NRIC and IPID controllers
where three different trajectories are used. The first tra-
jectory is a quintic polynomial of 0.5 sec duration while
the second one is generated by three combined sinusoidal
signals with different frequencies. The comparison is
done for the first two trajectories at no payload condi-
tion and at a maximum payload of 4 kg. The third tra-
jectory is a standard pick-and-place cycle of 25×305 mm
in 0.5 sec. One of the most popular trajectories for in-
dustrial robots such as Delta robot is the pick-and-place
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trajectory. So, the proposed controller will be tested for
this trajectory. The total number of pick-and-place cy-
cles that can be done by the robot per unit time in addi-
tion to the position error during this motion are impor-
tant factors to judge the suitability for industrial applica-
tions. There are many industrial applications that can be
achieved via typical pick-and-place motion such as; ma-
nipulating, inspecting, classifying, assembling, packing,
and sorting the products [21]. The model of the proposed
manipulator is built using SOLIDWORKS R⃝ and exported
to MSC-ADAMS R⃝ to establish the nonlinear dynamic
model accurately. Thereafter the co-simulation environ-
ment between MSC-ADAMS R⃝ and MATLAB R⃝ is set for
building a virtual environment to validate different con-
trol schemes. The input variables are the actuators’ forces
which applied to the model in MSC-ADAMS R⃝. They are
calculated in MATLAB R⃝ based on the control architec-
tures which are discussed in the previous section. The
designing procedures of the new controller, FFOPID, in-
clude two parts: the Feed-Forward controller and the IPID
controller. Choi et al [18] suggested some tuning rules
and performance limitations for the IPID controller which
will be taken into account to determine the gain matrices
K,Kp and KI . The system error vector, [ex, ey, ez]

T , is in-
versely proportional to the magnitude of a state-weighting
matrix, while the control effort is directly proportional to
this magnitude. Therefore, there is a tradeoff between the
system performance and control effort. The output of the
controller is denoted by a three-dimensional wrench in the
joint space Q = [ fx fy fz]. First, the proposed manipula-
tor is tested for ’quintic’ polynomial trajectory although
the cubic-polynomial is commonly used in robotics con-
text for trajectory tracking validation. However, its jerk is
discontinuous and this may lead to vibration that deterio-
rates manipulator performance. Therefore, jerk continuity
is desirable to improve control performance of manipula-
tors. In [22], a fifth-order ’quintic’ polynomial is proposed
for a given path. The trajectory is given as:

λ (t) = a1t5 +a2t4 +a3t3 +a4t2 +a5t +a6. (46)

This results in a quadratic function of jerk, which is con-
tinuous and second-order differentiable

...
λ = 60a1t2 +24a2t +6a3. (47)

The tracking errors at the two payload conditions are
shown in Figs. 8 and 9. As illustrated by these figures,
the FFOPID controller has the best performance in-terms
of the tracking error, followed by the IPID and lastly the
NRIC. This difference in the performance of the three con-
trollers becomes clearer when the payload is increased
to the maximum value 4 kg. The control efforts are de-
picted in Figs. 10 and 11 at no payload and with max-
imum payload respectively. The FFOPID controller and
IPID controller have smooth control forces in contrast to

Table 3. The maximum tracking error for NRIC, IPID and
FFOPID at the end-effector during no payload
and maximum payload, respectively.

Trajectory No. NRIC,
[m]

IPID,
[m]

FFOPID,
[m]

2 [rad/sec], No-payload 0.0049 0.0013 4.9×10−4

2[rad/sec], Max. payload 0.0066 0.0021 6.6×10−4

6[rad/sec], No-payload 0.0046 0.001 4.6×10−4

6[rad/sec], Max. payload 0.0048 0.002 6.6×10−4

20 [rad/sec], No-payload 0.0069 0.0016 8.1×10−4

20 [rad/sec], Max.
payload 0.0079 0.0033 0.002

Quintic, 0.5sec,
No-payload 0.0039 0.0014 7.3×10−4

Quintic, 0.5sec,
Max. payload 0.0039 0.0023 8.3×10−4

NRIC controller. Although FFOPID controller consumes
higher actuator forces than IPID during quintic polyno-
mial trajectory, they are still within the selected actua-
tors ranges. Second, a combination of three sinusoidal
signals with different frequencies is applied to the pro-
posed manipulator in three stages. The frequency content
of the trajectory is increased gradually from one stage to
another up to 20 rad/sec for robustness validation under
various frequencies. At the first stage, the maximum fre-
quency of the trajectory is set to be 2 rad/sec under no
payload and maximum payload as shown in Figs. 12(a)
and 12(b). The errors are shown in Figs. 13 and 14 un-
der the two payload conditions. According to these fig-
ures the maximum error is 0.0066 m, this occurs under
maximum payload with NRIC controller, then the IPID
controller gives 0.0021 m. The FFOPID controller gives a
maximum error of 6.6×10−4 m at the maximum payload.
The frequency of the first trajectory is small, neverthe-
less, the IPID controller and NRIC have a higher tracking
error than FFOPID. Figures 15 and 16 show the control
force of each actuator which is within the selected actua-
tor range. At the second stage, the maximum frequency
is increased to be 6 rad/sec. The errors in motions for the
three actuators are shown in Figs. 17 and 18 during no
payload and maximum payload respectively. These fig-
ures show that the FFOPID has the smallest error in all
axes during the two cases of payloads while the NRIC
shows the highest error in y-direction and the IPID has
the highest error in z-direction. Figures 19 and 20 show
the actuator forces in x-, y- and z-directions for the three
controllers. The NRIC controller consumes the highest
control forces for the three actuators which are changing
rapidly. In the practical environment, the rapid change in
actuator forces has undesired effects on the motors. Both
the IPID and FFOPID controllers have smooth behavior
besides FFOPID, in most cases, consumes lower actua-
tors’ forces. At the third stage, the tracking ability for
NRIC and IPID start to vanish when the maximum fre-
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quency becomes 20 rad/sec as shown in Fig. 21 while
FFOPID shows high robustness and small tracking error
during high frequency trajectories at no payload condition.
Figure 22 shows the three controllers with maximum pay-
load at frequency of 20 rad/sec. Although this frequency
is high and the manipulator at the maximum payload case,
the proposed controller can keep the best performance and
outperforms the other controllers in-terms of tracking er-
ror and tracking performance. According to Figs. 23 and
24, the power consumption of the actuators particularly at
z-direction at which the frequency becomes 20 rad/sec in
increased rapidly. The NRIC controller has non-smooth
performance in control force. The best tracking perfor-
mance is for the proposed controller, FFOPID, and this is
shown in Table 3 which illustrates the maximum tracking
error for NRIC, IPID and FFOPID. IPID comes in second
place followed by NRIC. The total weight of the proposed
manipulator is 6.67 kg which is localized mainly at the
base. Nevertheless, the proposed controller can recover
the maximum payload which is 4 kg efficiently. More-
over, the FFOPID can recover the dynamic coupling be-
tween x- and y- directions thoroughly. Further improve-
ments are currently a research target to get a balanced/light
weight 3D pantograph that will be expected to perform
better in-terms of tracking error and control effort. After-
ward, the FFOPID controller is tested for standard pick-
and-place cycle of 25× 305 mm in 0.5 sec as shown in
Fig. 25 where the maximum error is found to be 0.1 mm
at the end-effector with a payload of 4 Kg. The new ma-
nipulator is designed to work at high speed applications,
so the speed of the trajectory is considered during all tra-
jectories. The dynamic simulation results show the abil-
ity of the proposed 3D pantograph manipulator to give a
large workspace as serial robot and high speed and rigid-
ity as parallel robot. Finally, the robustness of the pro-
posed controller, FFOPID is tested against Gaussian noise
applied on the measured position vector of the actuators
[xa, ya, za] with a variance of 10−9. Figure 26 shows the
joint space errors in each axis. These results indicate that
the controller can recover the noise effect with small track-
ing errors. However, the control signal is increased to
suppress noise effect. The proposed controller, FFOPID,
shows a satisfactory performance during trajectory track-
ing and high-speed pick-and-place cycle. It compensates
the difference between the nominal plant and the real dy-
namics model that imported from MSC-ADAMS R⃝. The
FFOPID controller is applicable not only for the proposed
3D pantograph but also for any complicated Lagrangian
systems in which we can not use an explicit form of the
dynamic model matrices.

8. CONCLUSIONS

In this paper, an inverse optimal PID controller design
in H∞ framework with a feed-forward controller is pro-

posed for a novel 3D pantograph manipulator. The new
manipulator integrates the merits of both serial and par-
allel manipulators. It posses pure decoupled translational
motions and it is characterized by large workspace to size
ratio as well as high speed, rigidity, and accuracy. The dy-
namic model for a novel 3D translational manipulator is
presented based on Euler-Lagrange of first type method.
Moreover, a straightforward method to get an approxi-
mated nominal plant for the dynamic model is presented
to be used for model-based control methods. The design-
ing procedures of the proposed controller, feed-forward
control with inverse-optimal PID in H∞ framework is pre-
sented with its stability analysis. This new controller
combines many features such as straightforward imple-
mentation, robustness, optimality, and efficient execution
without the need of explicit forms of dynamic matrices.
The performance of the proposed controller is compared
with those of nonlinear robust motion controller, NRIC,
and inverse-optimal PID controller for different trajecto-
ries with different frequencies and payload variations. The
comparison indicates that the proposed controller outper-
forms the other two controllers. The robustness of the pro-
posed controller against speed/payload variations are ver-
ified through dynamic simulation using MSC-ADAMS R⃝

and MATLAB R⃝.
Consequently, the feasibility of the whole system is as-

sured for pure translational tracking applications. The
future research goal is to complete the experimental set-
up and investigates the dynamics of the controller during
the experimental work to validate the theoretical results.
Study the possibility of actuator faults and its modeling
methods particularly during the experimental validation
[23–26] is a part of our future work. In the same sense,
there is a need to implement a filtering stage for the pro-
posed control scheme [27].

APPENDIX A: KINETIC AND POTENTIAL
ENERGIES

The kinetic energy of i link can be computed according
to the following equation:

ki =
1
2

mi(ẋi
2 + ẏi

2 + żi
2)+

1
2

ω1,2 R1,2 Ii RT
1,2 ωT

1,2,

(A.1)

where ẋi, ẏi, żi are the linear velocity of each link along x-,
y- and z-directions respectively and Ii is the inertia matrix
of link i. There are two rotation matrices R1 and R2:

R1 = Roty,ϕ Rotz,(π/2+θ1)Rotx,(π/2), (A.2)

R2 = Roty,ϕ Rotz,(θ2−π/2)Rotx,(π/2), (A.3)

and two angular velocities vectors ω1 and ω2 are calcu-
lated from the skew-symmetric matrix Ω1 and Ω2
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Fig. 8. Joint space errors during quintic polynomial trajectory tracking control with no payload.
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Fig. 9. Joint space errors during quintic polynomial trajectory tracking control with maximum payload 4 kg.
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(c) Actuator force in z-direction

Fig. 10. Actuator forces for quintic polynomial trajectory tracking control with no payload.
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Fig. 11. Actuator forces for quintic polynomial trajectory tracking control with maximum payload 4 kg.
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Fig. 12. Tracking control of trajectory with maximum frequency of 2 rad/sec.
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Fig. 13. Joint space errors during trajectory tracking control with no payload and maximum frequency of 2 rad/sec.
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Fig. 14. Joint space errors during trajectory tracking control with maximum payload and maximum frequency of 2 rad/sec.
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(c) Actuator force in z-axis

Fig. 15. Actuator forces for trajectory tracking control under no payload with maximum frequency of 2 rad/sec.
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(c) Actuator force in z-axis

Fig. 16. Actuator forces for trajectory tracking control under maximum payload with maximum frequency of 2 rad/sec.
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Fig. 17. Joint space errors for NRIC, IPID and FFOPID during trajectory tracking control with no payload and maximum
frequency of 6 rad/sec.
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Fig. 18. Joint space errors for NRIC, IPID and FFOPID during trajectory tracking control with maximum payload and
maximum frequency of 6 rad/sec.
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0 0.2 0.4 0.6 0.8 1
−200

−100

0

100

200

300

400

500

Time [sec]

A
ct

ua
to

r f
or

ce
 in

 z
−a

xi
s 

[N
]

 

 

NRIC

IPID

FFOIPID

(c) Actuator force in z-axis

Fig. 19. Actuator forces for trajectory tracking control under no payload with maximum frequency of 6 rad/sec.
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(c) Actuator force inz-axis

Fig. 20. Actuator forces for trajectory tracking control under maximum payload with maximum frequency of 6 rad/sec.
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Fig. 21. Joint space errors for NRIC, IPID and FFOPID during trajectory tracking control with no payload and maximum
frequency of 20 rad/sec.
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Fig. 22. Joint space errors for NRIC, IPID and FFOPID during trajectory tracking control with maximum payload and
maximum frequency of 20 rad/sec.
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(c) Actuator force in z-axis

Fig. 23. Actuator forces for trajectory tracking control under no payload with maximum frequency of 20 rad/sec.
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(c) Actuator force in z-axis

Fig. 24. Actuator forces for trajectory tracking control under maximum payload with maximum frequency of 20 rad/sec.
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Fig. 25. Pick-and-place operation of the end-effector at yz-plane.
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Fig. 26. Joint space errors for FFOPID during trajectory tracking control with maximum frequency of 20 rad/sec and
Gaussian noise of variance 10−9.

Ω1 = Ṙ1,θ1 R−1
1 =

 0 −ωz1 ωy1

ωz1 0 −ωx1

−ωy1 ωx1 0

 , (A.4)

Ω2 = Ṙ2,θ2 R−1
2 =

 0 −ωz2 ωy2

ωz2 0 −ωx2

−ωy2 ωx2 0

 , (A.5)

then

ω1 = [ωx1 ωy1 ωz1], (A.6)

ω2 = [ωx2 ωy2 ωz2]. (A.7)

The potential energy of the i link is given by:

ui = mi ghi, (A.8)

where hi is the vertical height from link’s center of mass.
The gravitational vector is considered to be with the neg-
ative y-axis g = [0, −9.81, 0]T .
Abbreviations in (28-30):

a1 = (b4/b6), a2 = b2
6, a3 = (

x2
a + z2

x2
a

)0.5, (A.9a)

a4 = cos(2atana1), a5 = sin(2atana1), (A.9b)
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a6 =

√
−(x2

a + y2
a + z2

a)

(
x2

a + y2
a + z2

a −
1
25

)
, (A.9c)

a7 =
b5

a6b6
, a8 =

c8

b6
− c9, a9 = 0.575cos(

c5

b2
),

(A.9d)

b1 =
√

x2
a + z2

a, b2 =
(
x2

a + z2
a

) 3
2 , (A.10a)

b3 =
b4

2

a2
+1, b4 = (0.2y−b9), (A.10b)

b5 =
xa

(
4x2

a +4y2
a +4z2

a − 2
25

)
2

, (A.10c)

b6 = x2
a +

a3 xa

5
+ y2

a + z2
a, (A.10d)

b7 =
b4 b6

2 (2a3 xa +
1
5

)
a3

, (A.10e)

b8 = 2ya

(
x2

a + y2
a + z2

a −
1
25

)
, (A.10f)

b9 =

√
−(x2

a + y2
a + z2

a)

(
x2

a + y2
a + z2

a −
1
25

)
,

(A.10g)

c1 = 0.575a4, c2 = b1b3, c3 = a5b7, (A.11a)

c4 = b8 +2ya,
(
x2

a + y2
a + z2

a

)
, (A.12a)

c5 = 2atan
(

b4

b6

)
, c6 = b1c7, (A.12b)

c7 =
b4

2

b6
2 +1, c8 =

c4

2b9
+

1
5
, c9 =

2b4 ya

b6
2 , (A.12c)

e1 = 0.5(2za(x2
a + y2

a + z2
a −0.04)+2za(x2

a + y2
a + z2

a)),
(A.12d)

e2 = b4

(
2za +

za

5a3 xa

)
, e3 =

e2

b6
2 −

e1

b6b9
. (A.12e)
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